RWE

H₂-Speicher Gronau-Epe

RWE Gas Storage West GmbH

26. Juni 2024

Stadt Gronau - Ausschuss für Mobilität, Umwelt und Klimaschutz

RWE Gas Storage West GmbH

Speichertypen

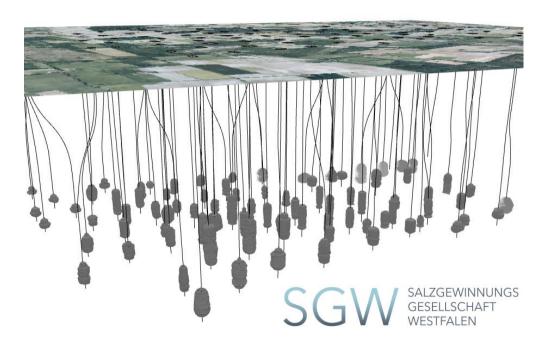
Erdgas speichert man in unterirdischen Poren- oder Kavernenspeichern

- Sie befinden sich zwischen 500 und 2.500 Meter tief unter der Erde.
- Die künstlichen Hohlräume in tiefen Salzformationen können eine Höhe von mehreren 100 Metern und einen Durchmesser von 80 Metern erreichen.
- Das sog. Kissengas ist ein Gaspolster in jedem Kavernenspeicher, es garantiert die Standfestigkeit der Kaverne und sorgt für eine natürliche Dichtung.

Gasspeicher in Deutschland

Speichertyp: Porenspeicher Rönne Kavernenspeicher Vollständige oder ABC partielle Stilllegung Bremen-Lesum Kraak (seit 2014) Huntorf Nüttermoor Kalle Berlin Arbeitsgasvolumen: Peckensen Uelsen Rehden unter 2 TWh Empelde Buchholz Rüdersdorf 2 bis 8 TWh KAVERNE Xanten Allmenhausen 📨 über 8 TWh Bad Lauchstädt Kirchheilingen Reckrod Stockstadt Eschenfelden Hähnlein Frankenthal @ Sandhausen Wolfersberg _ Breitbrunn Schmidhausen > Quell Fronhofen

Quelle: Initiative Energien Speichern, INES


Die Ausgangssituation:

- Kavernenspeicher vorrangig im Nord-Westen von Deutschland
- Große Kavernenspeicher-"Zentren" in Niedersachsen. NRW und Sachsen-Anhalt
- Im Süden Deutschland vorrangig Porenspeicher mit geringerer Flexibilität

26.06.2024 H2 Speicher (Seite 4

Inzenham

Kavernenfeld Gronau-Epe

SGW – Entwicklerin des Kavernenfeldes

Durch die kontinuierliche Solegewinnung (jährlich mehrere

Millionen Tonnen) entstehen ständig neue Kavernen, die für die Untergrundspeicherung genutzt werden können.

114 Kavernen gesamt, davon

- 32 für die Soleproduktion
- 5 für die Rohölspeicherung (1,5 Mio. m³)
- 76 gefüllt mit Erdgas (3,5 Mrd. Nm³)
- 1 dient der Heliumspeicherung

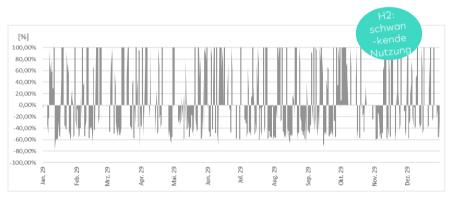
Quelle: SGW; Dialogmarkt der RWE Gas Storage West GmbH 09.06.2022

Warum wird Erdgas gespeichert?

 Erdgasspeicher sind wichtige Quelle externer Regelenergie für Netzbetreiber


 die Speicherung ermöglicht Händlern, ihre Gasbezüge sowie ihr Handelsportfolio zu optimieren

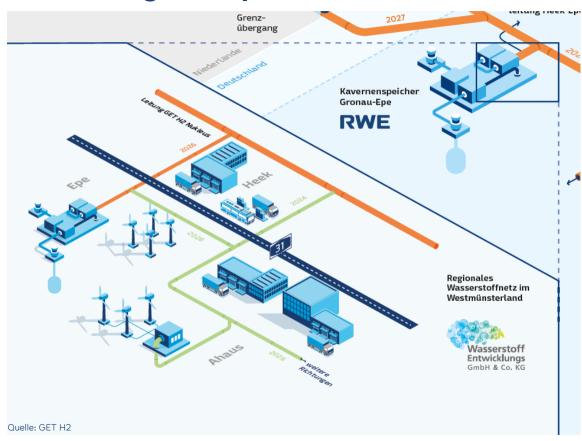
um Bedarfsschwankungen auszugleichen • um die Energieversorgung auch im Fall von Lieferverzögerungen zu gewährleisten


Änderung des Speicherbedarfs Strukturierung der Netze bei volatiler Erzeugung

Speicherung von wertvollem, regenerativ erzeugtem Wasserstoff

- volatile Erzeugung abhängig von Wind und Sonne
- kontinuierlicher Bedarf bei den Nutzern
- Strukturierung der Netze erforderlich

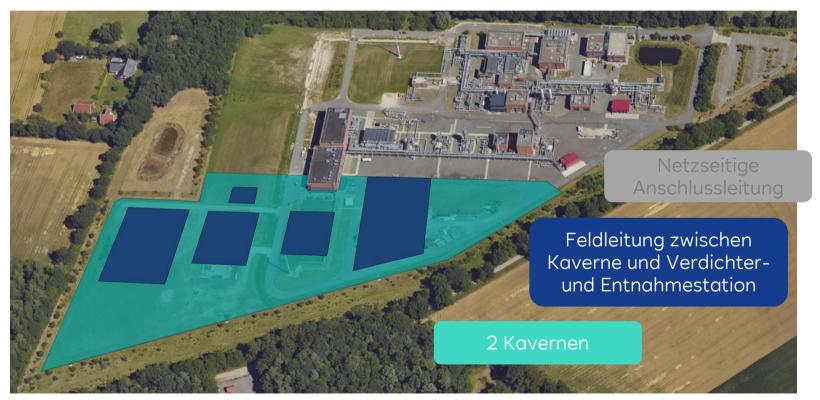
Quelle: GIE: AGSI+: RWEGSW



Quelle: GetH2

Quelle: GET H2

Anbindung des Speichers

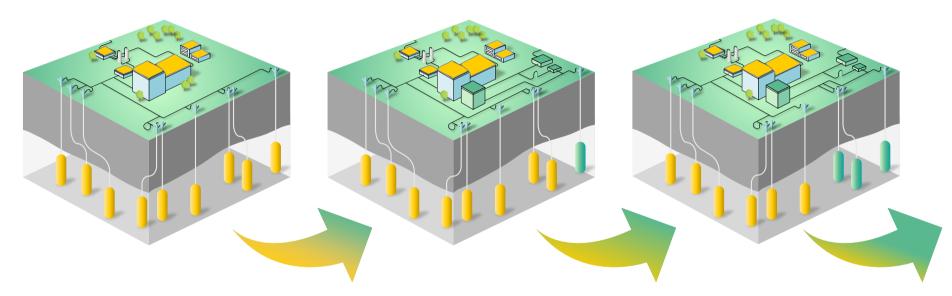

Das GET H2 Netz besteht aus der Umstellung bestehender Leitungen sowie aus den Neubauprojekten

- Heek-Epe,
- Dorsten-Marl und
- Dorsten-Hamborn

In dem Projekt GET H2 Nukleus und seinen Erweiterungen bilden sie den Kern für ein Wasserstoffnetz in Deutschland.

Erweiterung des bestehenden Standort Epe L-Gas

Nutzung von vorhandenen Reserveflächen auf dem Speichergelände


Kavernen und Feldleitung

Kaverne Epe S75 und Epe S59

Parallelbetrieb Erdgas mit neuen Obertageanlagen H2

... sowie Umstellung der Untertageanlagen auf H2

Initiale Umstellung mit neuen Obertageanlagen und einer Kaverne Sukzessive weitere Umstellung einzelner Kavernen und weitere Baustufen **2 Kavernen/Jahr/Standort** können bei RGSW geflutet, neu komplettiert und mit H₂ erstbefüllt werden (Engpass: Sole)

Projektstatus RWE Epe H2 IPCEI

Förderung, Genehmigung und Errichtung

- Förderverfahren (und daran anschließende FID) weiterhin offen
- Planfeststellungsantrag eingereicht 02/2023 Genehmigung erteilt 01/2024
- intensive Detailplanung abgeschlossen, Ausführungsplanung läuft parallel zur Beschaffung
- Beschaffung/Errichtung im Plan soweit ohne finale Förderzusage möglich:
 - Verdichteranlagen beauftragt
 - Bestellung Gasreinigungsanlagen erfolgt
 - Engineering für verfahrenstechnische Gesamtplanung läuft
 - weiteres long-lead-Material (Rohrleitungen, etc.) beauftragt
 - Arbeiten zur Errichtung der obertägigen Anlagen gestartet

Zeitplan

Vorteile der Anlagenerweiterung

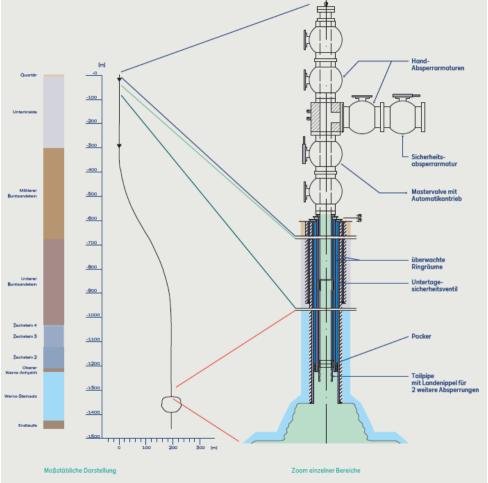
Effekte durch Erweiterung des bestehenden Betriebs

- Nutzung vorhandener Infrastrukturen und Vermeidung zusätzlicher Flächeninanspruchnahme außerhalb des bestehenden Geländes
- Lage des Betriebsgeländes außerhalb von Schutzgebieten
- Möglichkeit der Erweiterung bestehender Feldleitungstrassen zur Minimierung der Inanspruchnahme (landwirtschaftlicher) Flächen
- Nutzung von vorhandenen Erfahrungen aus dem Erdgas-Geschäft und Einsatz des bestehenden Know-How der Mitarbeiter

zukünftige Erweiterungsoption

potenzielle Erweiterungsflächen nach Baustufe 2

- bestehendes Gelände bietet Möglichkeiten für aktuelles Projekt sowie Baustufe 2
- für darüber hinausgehende Erweiterungen wären zusätzliche Flächen erforderlich


RWE

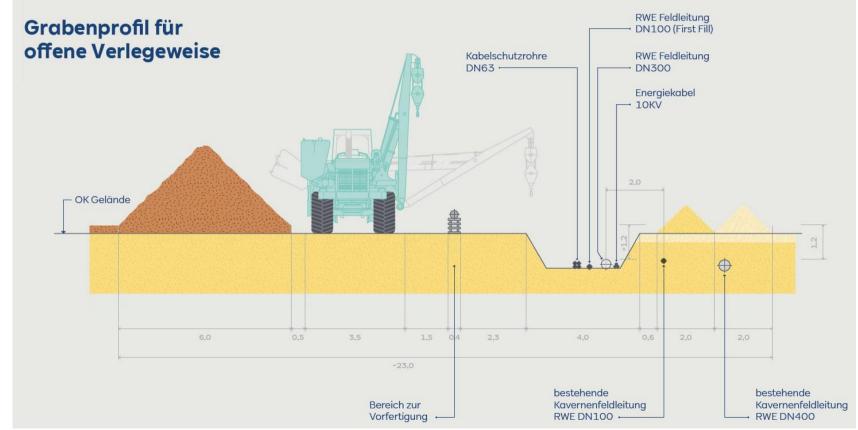
Vielen Dank für Ihr Interesse!

RWE

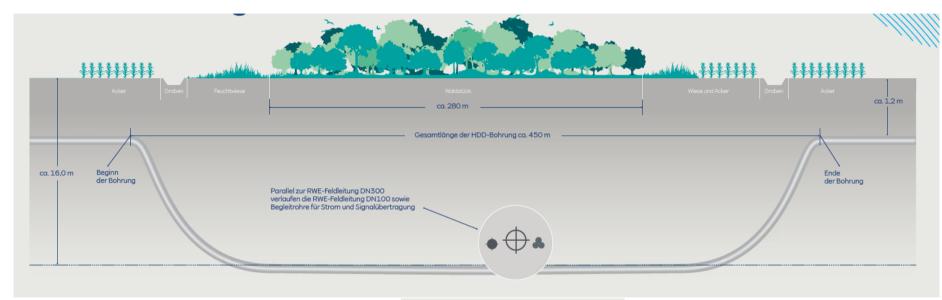
BACKUP

Kavernen-Komplettierung

Bergrechtliches Genehmigungsverfahren


RWE 26.06.2024 H2 Speicher Gronau-Epe Seite 20

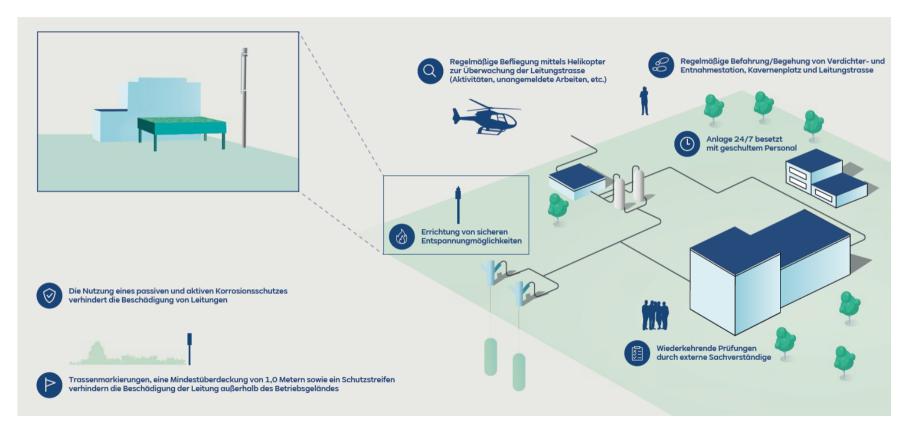
Es erfolgt eine erneute Öffentlichkeitsbeteiligung

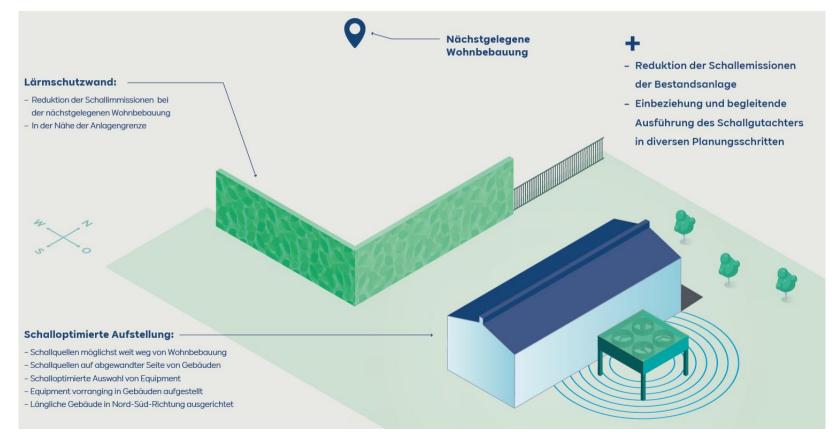

zur Vorstellung des Projekts

Die Genehmigungsbehörde erteilt den Planfeststellungsbeschluss

Verlegeprofil Feldleitung

HDD-Bohrung der Feldleitung




RWE 26.06.2024 H2 Speicher Gronau-Epe

HDD-Bohreinrichtung

Sicherheit im Betrieb

Schallschutz

